Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3633-3638, 2018.
Article in Chinese | WPRIM | ID: wpr-689868

ABSTRACT

In this paper, on the contrast of healthy leech, the bacterial diversities were analyzed by 16S rDNA sequence analysis of the bacteria of muscle and intestinal tract of Whitmania pigra, the environment water and sediment of cultivating the diseased Wh. pigra in high temperature by high-throughput sequencing to determine the possible pathogenic bacteria of bacterial diseases of Leech in high temperature. The results showed that the original sequence reached over 83 000, and the effective sequences accounted for more than 87%. The GC contents ranged from 52% to 54% and the bacterial diversities were abundant. Bacterial relative abundance analysis showed that the bacterial content of Proteobacteria, Bacteroidetes, and Firmicutes was the most abundant in all treatments. Compared with healthy leech muscles and intestines, the muscle and intestinal tract of pathogenic leech relative abundance of Bacteroides, Pseudomonas, and Desulfovibrio was significantly increased, and it was abundant in water and sediment of diseased leeches, Lead to the possibility that the pathogenic bacteria of this bacterial disease may be Bacteroides, Pseudomonas, Desulfovibrio.

2.
Chinese Journal of Biotechnology ; (12): 1234-1245, 2018.
Article in Chinese | WPRIM | ID: wpr-687693

ABSTRACT

World Health Organization has recognized antibiotic resistance is one of the serious threats to public health and food-safety in the 21st century. Recently, the antibiotic resistance gene (ARG) has been widely considered as a new pollutant. Now, many studies suggested that animal farm is one of the major reservoirs of ARGs. Antibiotic resistance bacteria and antibiotic resistance genes enter the environment along with animal excrement, accelerating the spread of ARGs in the environment. In the livestock and poultry breeding environment, ARGs and antibiotic resistant bacteria could be transmitted to humans through the food chain, water or air, posing a great threat to public health. This review highlights the prevalence of antibiotic resistant bacteria and antibiotic resistant genes in livestock-breeding environment, the retention and spread of ARGs and the method used to study the antibiotic resistance, which will provide certain support for risk assessment of antimicrobial resistance in food animal breeding environment.

SELECTION OF CITATIONS
SEARCH DETAIL